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An essential need of the U.S. Air 
Force is the discovery, development, 
and fielding of new, energetic 
materials for advanced chemical 
propulsion in rocket and missile 
applications. Some of the key factors 
driving the requirement for new 
chemical propellants include (a) 
improved performance in terms of 
increased specific impulse and density, 
(b) reduced sensitivity to external 
stimuli such as impact, friction, 
shock, and electrostatic discharge, 
and (c) mitigation of environmental 
and toxicological hazards (and 
the resulting costs) associated with 
currently used propellants.

A class of compounds that can 
potentially meet these requirements is 
known as ionic Liquids (ILs), which 
are chemical salts with unusually 
low melting points. The physical and 
chemical properties of ILs render 

them useful for many purposes, most 
notably as environmentally benign 
(“green”) solvents/reaction media but 
also as catalysts, electrolytes, etc.1
From a Department of Defense (DoD) 
perspective, ILs are being explored 
as new propellants, explosives, and 
munitions.2

The Air Force, in particular, is 
interested in ILs as potential 
replacements for currently used 
monopropellants such as hydrazine,
which is carcinogenic, highly 
toxic, and has relatively modest 
performance characteristics. 

In contrast, many ILs have superior 
densities and specific impulses as well 
as significantly reduced sensitivity and 
toxicity characteristics. Furthermore, 
their properties can be carefully tuned 
via the choice of the component ions.

The overall objective of the Design 
of Energetic Ionic Liquids challenge 

project is to address several key 
technical issues and challenges 
associated with the characterization, 
design, and development of ILs as 
new monopropellants. Among these, 
for example, are a fundamental 
understanding of the (in)stability 
of ILs, the intrinsic nature of the 
short- and long-range structure and 
interactions between the component 
ions, 2e-f and identification of the 
key steps in the initial stages of 
decomposition and combustion. 2a-c

The research described in this article 
is focused on characterization of 
the structures and stabilities of ion 
pair clusters and prediction of their 
interaction energies in the gas phase. 

Our computational approach utilizes 
quantum chemical methods for 
prediction of ion pair structures and 
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Figure 1. MP2/aug-cc-pVDZ optimized structures of two pairs of 1,2,4-triazolium (1,2,4-triazole) and dinitramide 
(dinitramine) molecules. H is white, C is gray, O is red, N is blue.
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interaction energies. In particular, 
geometry optimizations were 
performed using second-order 
perturbation theory3 (MP2, also known 
as MBPT2) with the aug-cc-pvdz basis 
set,4 denoted as MP2/aug-cc-pvdz.  

Relative energies were refined using 
a systematic series of single-point 
energy calculations at the MP2 and 
coupled cluster (e.g., singles and 
doubles with a perturbative estimate 
of triples, CCSD(T)5) levels of theory. 
Specifically, MP2/cc-pvdz, MP2/aug-
cc-pvdz, and CCSD(T)/cc-pvdz energy 
calculations were combined to obtain 
estimated CCSD(T)/aug-cc-pvdz 
relative energies. All computations 
were performed using the GAMESS 
quantum chemistry code.6

MP2 and coupled cluster (CC) 
calculations in GAMESS utilize a library 
of communications routines known 
as the Distributed Data Interface 
(DDI),7 a high-level communications 
layer operating between GAMESS 
and the underlying message-passing 
protocols (Shared Memory (SHMEM), 
Message Passing Interface (MPI), 
Low-level Application Programming 
Interface (LAPI), or sockets within a 
Transmission Control Protocol/Internet 
Protocol (TCP/IP) stack.)  

In the case of the Naval 
Oceanographic Office Major 
Shared Resource Center (NAVO 
MSRC) IBM systems KRAKEN 
and BABBAGE, DDI uses MPI for 
intranode communications and the 
LAPI protocol for messages between 
nodes. These types of calculations 
have significant memory requirements 
and therefore are well suited for 
execution on systems with large 
amounts of memory per node, such 
as BABBAGE. 

Coupled cluster calculations are 
especially memory intensive and, 
as implemented in GAMESS with 
DDI, utilize a threefold hierarchy of 
memory. First, a modest amount of 
Replicated Data (RD) is exclusively 
assigned to each core. Similarly, a 
block of Node-specific Data (ND) is 
reserved on each node and is shared 
by all the cores on that node. The 
remaining memory on each node is 
collectively shared by all cores as a 
large, single pool of Distributed Data 
(DD). Therefore, the required Memory 
(MCC) per node for CC calculations 
is MCC = P*(RD) + (ND) + (DD)/N, 
where “P” and “N” are the number of 
cores per node and the total number 
of nodes, respectively, used in the 
computation.

The values of RD, ND, and DD are 
determined by the specifics of the 
calculation, whereas suitable values 
of P and N are dictated by the 
hardware, specifically, the amount 
of accessible physical memory per 
node. If necessary, P can be chosen 
to be smaller than the number of 
available cores per node Pmax 
in order to reduce the amount of 
required memory per node. Table 1 
summarizes the memory requirements 
for CCSD(T) calculations using a 
series of increasingly large basis sets. 

Only the smallest calculation 
(CCSD(T)/cc-pvdz) could be 
performed within the constraints of 
the hardware (Pmax and Mmax) and 
the challenge queue limits (Nmax
and Tmax, see Table 2.)  In principle, 
the CCSD(T)/6-311++G(d,p)8 and 
CCSD(T)/aug-cc-pvdz calculations 
could be run on the pair of “bigmem” 
nodes, but the estimated required 
wall time of the former, on the order 
of 100 days, is prohibitively long. 
Conversely, this calculation would 
be within the realm of practicality if 
~100 bigmem nodes were available. 

One of the specific ion combinations 
considered in this work is the 1,2,4-
triazolium cation ([C2N3H4]+)
paired with the dinitramide anion 
([N(NO2)2]-). Of the numerous 
structures found for the two pairs 
of 1,2,4-triazolium and dinitramide 
ions, or the pairs of corresponding 
neutral 1,2,4-triazole and dinitramine 
molecules, the most stable MP2/aug-
cc-pvdz optimized geometries are 
shown in Figure 1. 

In the ionic structure, each 1,2,4-
triazolium forms two hydrogen bonds, 
via the hydrogens on the N atoms, 
to the O atoms of the dinitramide 
ions. Interestingly, this structure 
exhibits parallel stacking of the two 
cationic 1,2,4-triazolium rings. The 
interplane distance is ~3.2 Å, with a 
parallel displacement of ~1.4 Å. The 
corresponding neutral tetramer shows 
a similar parallel stacking arrangement 
of the triazole rings. 
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a. “MW” denotes megawords. (106 64-bit words)
b. Exceeds amount of usable physical memory on each standard node. (See Table 2)
c. Fits within usable physical memory on each bigmem node, but execution time is prohibitively long.
d. Exceeds amount of usable physical memory on each bigmem node. (See Table 2)

Basis Set 
(# of AOs)

RD
(MW/core)

ND
 (MW/node)

DD (MW) P N
MCC

(MW/node)

cc-pvdz

(376)
   8 1,175 4,950 16 64 1,381

6-311++G(d,p)

(580)
22 3,298 16,000

16

1

16

64

64

2

3,900b

3,570b

11,474c

aug-cc-pvtz

(1268)
26 3,875 19,150

1

1

64

2

4,200b

13,476c

aug-cc-pvqz 330 18,493 146,000
1

1

64

2

21,105b

91,823d

aug-cc-pvqz

(2228)
2495 60,370 807,000

1

1

64

2

75,475b

466,365d

Table 1. Memory requirements for CCSD(T) single point energy 
calculations.
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Furthermore, it is of interest to 
determine the cluster size at which 
the ion pair structures become more 
stable than the corresponding neutral 
pair structures. A previous study 
predicted that ion pair dimers are 
typically higher in energy than neutral 
pair dimers.2c Including zero point 
vibrational energy (ZPVE) corrections, 
the ionic tetramer in Figure 1 is 1.2 
kilocalorie/mole (kcal/mol) lower than 
that of the neutral one. 

The MP2 method tends to predict 
higher energies for ionic species vs. 
neutral species,2c so more accurate 
CCSD(T)/aug-cc-pVDZ energy 
calculations of these two tetramer 
structures were desired. However, 
since the computational cost of 
CCSD(T)/aug-cc-pVDZ is prohibitive, 
these energies were approximated 
from the MP2/aug-cc-pVDZ 

energies by estimating the electron 
correlation energy differences using 
three independent methods: (1) the 
differences between the MP2/cc-pVDZ 
and CCSD(T)/cc-pVDZ energies of 
the tetramers, (2) the differences 
between the MP2/aug-cc-pVDZ and 
CCSD(T)/aug-cc-pVDZ energies of 
the twelve pairs of dimers in these 
two tetramers, and (3) the differences 
between the MP2/aug-cc-pVDZ and 
CCSD(T)/aug-cc-pVDZ energies of 
the eight monomers in these two 
tetramers. Using these three methods, 
and including ZPVE corrections, the 
estimated CCSD(T)/aug-cc-pVDZ 
energy of the ionic tetramer is lower 
than that of the neutral tetramer 
by 5.7, 7.3, and 7.7 kcal/mol, 
respectively.

In conclusion, quantum chemical 
calculations suggest that cation-cation 

parallel stacking structures can exist 
in very small ionic clusters such as 
two 1,2,4-triazolium cations and two 
dinitramide anions. Furthermore, 
for two pairs of 1,2,4-triazolium and 
dinitramide, ionic structures are more 
stable than the corresponding neutral 
structures. 

Finally, it should be noted that lower 
theoretical methods, do not include 
the effects of electron correlation, 
such as Hartree-Fock, do not predict 
a parallel stacking geometry of the 
rings. Therefore, it is essential to 
utilize correlated methods such as 
MP2 and CCSD(T) in order to obtain 
proper descriptions of the structures 
and interaction energies of these ion 
clusters. The structural motifs and 
interaction patterns found in this study 
provide new understanding of ionic 
materials with aromatic rings. 
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